Refine Your Search

Topic

Search Results

Standard

VEHICLE ELECTROMAGNETIC IMMUNITY—ON-BOARD TRANSMITTER SIMULATION

1996-09-01
HISTORICAL
J551/12_199609
This part of SAE J551 specifies on-board transmitter simulation test methods and procedures for testing passenger cars and commercial vehicles. The electromagnetic disturbances considered in this part of SAE J551 are limited to continuous narrow band electromagnetic fields.
Standard

Test Limits and Methods of Measurement of Radio Disturbance Characteristics of Vehicles and Devices, Broadband and Narrowband, 150 kHz to 1000 MHz

2000-05-02
HISTORICAL
J551/4_200005
This SAE Standard contains test limit1 and procedures for the measurement of radio disturbances in the frequency range of 150 kHz to 1000 MHz. The document applies to any electronic/electrical component intended for use in vehicles. Refer to International Telecommunications Union (ITU) Publications for details of frequency allocations. The test limits are intended to provide protection for receivers installed in a vehicle from disturbances produced by components/modules in the same vehicle.2 The receiver types to be protected are: broadcast radio and TV3, land-mobile radio, radio telephone, amateur and citizens' radio. The limits in this document are recommended and subject to modification as agreed between the vehicle manufacturer and the component supplier. This document shall also be applied by manufacturers and suppliers of components and equipment which are to be added and connected to the vehicle harness or to an on-board power connector after delivery of the vehicle.
Standard

Test Limits and Methods of Measurement of Radio Disturbance Characteristics of Vehicles and Devices, Broadband and Narrowband, 150 kHz to 1000 MHz

2006-09-27
CURRENT
J551/4_200609
This SAE Standard contains test limits and procedures for the measurement of radio disturbances in the frequency range of 150 kHz to 1000 MHz. The document applies to any electronic/electrical component intended for use in vehicles. Refer to International Telecommunications Union (ITU) Publications for details of frequency allocations. The test limits are intended to provide protection for receivers installed in a vehicle from disturbances produced by components/ modules in the same vehicle. The receiver types to be protected are: broadcast radio and TV, land-mobile radio, radio telephone, amateur and citizens' radio. The limits in this document are recommended and subject to modification as agreed between the vehicle manufacturer and the component supplier. This document shall also be applied by manufacturers and suppliers of components and equipment which are to be added and connected to the vehicle harness or to an on-board power connector after delivery of the vehicle.
Standard

Immunity to Conducted Transients on Power Leads

2023-03-20
CURRENT
J1082_202305
This SAE Standard defines methods and apparatus to evaluate electronic devices for immunity to potential interference from conducted transients along battery feed or switched ignition inputs. Test apparatus specifications outlined in this procedure were developed for components installed in vehicles with 12-V systems (passenger cars and light trucks, 12-V heavy-duty trucks, and vehicles with 24-V systems). Presently, it is not intended for use on other input/output (I/O) lines of the device under test (DUT).
Standard

TEST LIMITS AND METHODS OF MEASUREMENT OF RADIO DISTURBANCE CHARACTERISTICS OF VEHICLES, MOTORBOATS, AND SPARK-IGNITED ENGINE-DRIVEN DEVICES

1994-03-21
HISTORICAL
J551/2_199403
The limits in this SAE Standard are designed to provide protection for receivers of all types of radio transmissions when used in buildings. As a result, receivers of radio transmissions used out-of-doors may not be protected by the limits specified. This publication applies to the emission of electromagnetic energy which may cause interference to radio reception and which is emitted from: a Vehicles propelled by an internal combustion engine, electrical means or both (see SAE J551/1 for definition) b Motorboats propelled by an internal combustion engine, electrical means or both NOTE—For the purposes of this publication, motorboats are considered to be a subset of vehicles unless specifically mentioned to the contrary. c Devices equipped with spark-ignited internal combustion engines (see SAE J551/1 for definition) This publication does not apply to aircraft, traction systems (railway, tramway, and trolley bus), or to incomplete vehicles.
Standard

Test Limits and Methods of Measurement of Radio Disturbance Characteristics of Vehicles, Motorboats, and Spark-Ignited Engine-Driven Devices

2006-09-27
CURRENT
J551/2_200609
The limits in this SAE Standard are designed to provide protection for receivers of all types of radio transmissions when used in buildings. As a result, receivers of radio transmissions used out-of-doors may not be protected by the limits specified. This publication applies to the emission of electromagnetic energy which may cause interference to radio reception and which is emitted from: a. vehicles propelled by an internal combustion engine, electrical means or both (see SAE J551/1 for definition); b. motorboats propelled by an internal combustion engine, electrical means or both; and c. devices equipped with spark-ignited internal combustion engines (see SAE J551/1 for definition). This publication does not apply to aircraft, traction systems (railway, tramway, and trolley bus), or incomplete vehicles.
Standard

Electronmagnetic Compatibility Measurement Procedure for Vehicle Components - Part 21: Immunity to Electromagnetic Fields, 30 MHz to 18 GHz, Absorber-Lined Chamber

2013-05-28
CURRENT
J1113/21_201305
This part of SAE J1113 specifies test methods and procedures for testing electromagnetic immunity (of vehicle radiation sources) of electronic components for passenger cars and commercial vehicles. To perform this test method, the electronic module along with the wiring harness (prototype or standard test harness) and peripheral devices will be subjected to the electromagnetic disturbance generated inside an absorber-lined chamber. The electromagnetic disturbances considered in this part of SAE J1113 are limited to continuous narrowband electromagnetic fields. Immunity measurements of complete vehicles are generally only performed at the vehicle manufacturer. The reasons, for example, are high costs of a large absorber-lined chamber, preserving the secrecy of prototypes, or the large number of different vehicle models. Therefore, for research, development and quality control, a laboratory measuring method shall be applied by the manufacturers.
Standard

Electromagnetic Compatibility Measurement Procedures and Limits for Components of Vehicles, Boats (up to 15 m), and Machines (Except Aircraft) (16.6 Hz to 18 GHz)

2013-10-01
HISTORICAL
J1113/1_201310
This SAE Standard covers the measurement of voltage transient immunity and within the applicable frequency ranges, audio (AF) and radio frequency (RF) immunity, and conducted and radiated emissions. By reference, ISO 11452-3, ISO 11452-7, ISO 11452-8, ISO 11452-10, ISO 11452-11, ISO 11452-2 and the emissions portion of ISO 7637-2 are adopted in place of SAE J1113-24, SAE J1113-3 , SAE J1113-22, SAE J1113-2, SAE J1113-28, SAE J1113-21 and SAE J1113-42, respectively. In the event that an amendment is made or a new edition is published, the new ISO document shall become part of this standard six months after the publication of the ISO document. SAE reserves the right to identify exceptions to the published ISO document with the exceptions to be documented in SAE J1113-24, SAE J1113-3, SAE J1113-22, SAE J1113-2, SAE J1113-28, SAE J1113-21 and SAE J1113-42 respectively. By reference, IEC CISPR 25 is adopted as the standard for the measurement of component emissions.
Standard

Electromagnetic Compatibility Measurement Procedures and Limits for Components of Vehicles, Boats (up to 15 m), and Machines (Except Aircraft) (16.6 Hz to 18 GHz)

2018-10-25
HISTORICAL
J1113/1_201810
This SAE Standard covers the measurement of voltage transient immunity and within the applicable frequency ranges, audio (AF) and radio frequency (RF) immunity, and conducted and radiated emissions. By reference, ISO 11452-3, ISO 11452-7, ISO 11452-8, ISO 11452-10, ISO 11452-11, ISO 11452-2, and the emissions portion of ISO 7637-2 are adopted in place of SAE J1113-24, SAE J1113-3, SAE J1113-22, SAE J1113-2, SAE J1113-28, SAE J1113-21, and SAE J1113-42, respectively. In the event that an amendment is made, or a new edition is published, the new ISO document shall become part of this standard 6 months after the publication of the ISO document. SAE reserves the right to identify exceptions to the published ISO document with the exceptions to be documented in SAE J1113-24, SAE J1113-3, SAE J1113-22, SAE J1113-2, SAE J1113-28, SAE J1113-21, and SAE J1113-42, respectively. By reference, IEC CISPR 25 is adopted as the standard for the measurement of component emissions.
Standard

Electromagnetic Compatibility Measurement Procedures and Limits for Components of Vehicles, Boats (up to 15 m), and Machines (Except Aircraft) (16.6 Hz to 18 GHz)

2023-04-04
CURRENT
J1113/1_202304
This SAE Standard covers the measurement of voltage transient immunity and within the applicable frequency ranges, audio (AF) and radio frequency (RF) immunity, and conducted and radiated emissions. By reference, ISO 11452-3, ISO 11452-7, ISO 11452-8, ISO 11452-10, ISO 11452-11, ISO 11452-2, and the emissions portion of ISO 7637-2 are adopted in place of SAE J1113-24, SAE J1113-3, SAE J1113-22, SAE J1113-2, SAE J1113-28, SAE J1113-21, and SAE J1113-42, respectively. In the event that an amendment is made, or a new edition is published, the new ISO document shall become part of this standard 6 months after the publication of the ISO document. SAE reserves the right to identify exceptions to the published ISO document with the exceptions to be documented in SAE J1113-24, SAE J1113-3, SAE J1113-22, SAE J1113-2, SAE J1113-28, SAE J1113-21, and SAE J1113-42, respectively. By reference, IEC CISPR 25 is adopted as the standard for the measurement of component emissions.
Standard

Electromagnetic Compatibility Measurement Procedure for Vehicle Components - Immunity to AC Power Line Electric Fields

2021-12-13
CURRENT
J1113/26_202112
This SAE Recommended Practice covers the recommended testing techniques for the determination of electric field immunity of an automotive electronic device when the device and its wiring harness is exposed to a power line electric field. This technique uses a parallel plate field generator and a high voltage, low current voltage source to produce the field.
Standard

CONDUCTED IMMUNITY, 250 KHZ TO 500 MHZ, DIRECT INJECTION OF RADIO FREQUENCY (RF) POWER

1995-11-01
HISTORICAL
J1113/3_199511
This part of SAE J1113 specifies the direct RF power injection test method and procedure for testing electromagnetic immunity of electronic components for passenger cars and commercial vehicles. The electromagnetic disturbances considered in this part of SAE J1113 are limited to continuous, narrowband conducted RF energy. This test method is applicable to all DUT leads except ground. The test provides differential mode excitation to the DUT. Immunity measurements of complete vehicles are generally only possible by the vehicle manufacturer. The reasons, for example, are high costs of a large absorber-lined chamber, preserving the secrecy of prototypes or the large number of different vehicle models. Therefore, for research, development, and quality control, a laboratory measuring method for components shall be applied by the manufacturer. This method is suitable over the frequency range of 250 kHz to 500 MHz.
Standard

Conducted Immunity, 250 kHz to 400 MHz, Direct Injection of Radio Frequency (RF) Power

2006-09-19
HISTORICAL
J1113/3_200609
This part of SAE J1113 specifies the direct RF power injection test method and procedure for testing electromagnetic immunity of electronic components for passenger cars and commercial vehicles. The electromagnetic disturbances considered in this part of SAE J1113 are limited to continuous, narrowband conducted RF energy. This test method is applicable to all DUT leads except the RF reference ground. The test provides differential mode excitation to the DUT. Immunity measurements of complete vehicles are generally only possible by the vehicle manufacturer. The reasons, for example, are high costs of a large absorber-lined chamber, preserving the secrecy of prototypes or the large number of different vehicle models. Therefore, for research, development, and quality control, a laboratory measuring method for components shall be applied by the manufacturer. This method is suitable over the frequency range of 250 kHz to 400 MHz.
Standard

Electromagnetic Compatibility Measurement Procedures and Limits for Vehicle Components (Except Aircraft)—Conducted Immunity, 15 Hz to 250 kHz—All Leads

2010-08-06
CURRENT
J1113/2_201008
This document is an SAE Standard and covers the requirements for determining the immunity characteristics of automotive electronic equipment, subsystems, and systems to EM energy injected individually onto each lead. This test may be used over the frequency range of 15 Hz to 250 kHz. The method is applicable to all input, output, and power leads. The method is particularly useful in evaluating DUTs with acoustic or visible display functions.
Standard

Electromagnetic Compatibility Measurements Procedure for Vehicle Components - Part 27: Immunity to Radiated Electromagnetic Fields - Mode Stir Reverberation Method

2023-03-23
CURRENT
J1113/27_202303
Vehicle electrical/electronic systems may be affected when immersed in an electromagnetic field generated by sources such as radio and TV broadcast stations, radar and communication sites, mobile transmitters, cellular phones, etc. The reverberation method is used to evaluate the immunity of electronic devices in the frequency range of 500 MHz to 2.0 GHz, with possible extensions to 200 MHz and 10 GHz, depending upon chamber size and construction. Optional pulse modulation testing at HIRF (High Intensity Radiated Fields) test levels, based upon currently known environmental threats, has been added to this revision of the standard. This document addresses the Mode Stir (Continuous Stirring) Reverberation testing method which has been successfully utilized as a design and production stage development tool for many years. The Mode Tuned (Stepped Tuner) Reverberation testing method is covered in the SAE J1113-28 document.
Standard

Immunity to Radiated Electromagnetic Fields - Bulk Current Injection (BCI) Method

2014-04-25
HISTORICAL
J1113/4_201404
This SAE Standard defines a method for evaluating the immunity of automotive electrical/electronic devices to radiated electromagnetic fields coupled to the vehicle wiring harness. The method, called Bulk Current Injection (BCI), uses a current probe to inject RF onto the wiring harness in the frequency range of 1 to 400 MHz. BCI is one of a number of test methods that can be used to simulate the electromagnetic field.
Standard

Conducted Immunity, 250 kHz to 400 MHz, Direct Injection of Radio Frequency (RF) Power

2010-08-05
CURRENT
J1113/3_201008
This part of SAE J1113 specifies the direct RF power injection test method and procedure for testing electromagnetic immunity of electronic components for passenger cars and commercial vehicles. The electromagnetic disturbances considered in this part of SAE J1113 are limited to continuous, narrowband conducted RF energy. This test method is applicable to all DUT leads except the RF reference ground. The test provides differential mode excitation to the DUT. Immunity measurements of complete vehicles are generally only possible by the vehicle manufacturer. The reasons, for example, are high costs of a large absorber-lined chamber, preserving the secrecy of prototypes or the large number of different vehicle models. Therefore, for research, development, and quality control, a laboratory measuring method for components shall be applied by the manufacturer. This method is suitable over the frequency range of 250 kHz to 400 MHz.
Standard

Measurement of Radiated Emissions from Integrated Circuits—Surface Scan Method (Loop Probe Method) 10 MHz to 3 GHz

2016-09-16
CURRENT
J1752/2_201609
This SAE Recommended Practice defines a method for evaluating the near field electric or magnetic component of the electromagnetic field at the surface of an integrated circuit (IC). This technique is capable of providing a detailed pattern of the RF sources internal to the IC. The resolution of the pattern is determined by the characteristics of the probes used and the precision of the mechanical probe positioner. The method is usable over the 10 MHz to 3 GHz frequency range with existing probe technology. The probe is mechanically scanned according to a programmed pattern in a plane parallel or perpendicular to the IC surface and the data is computer processed to provide a color-enhanced representation of field strength at the scan frequency. This procedure is applicable to measurements from an IC mounted on any circuit board that is accessible to the scan probe. For comparisons, the standardized test board shall be used.
Standard

Measurement of Radiated Emissions from Integrated Circuits—Surface Scan Method (Loop Probe Method) 10 MHz to 3 GHz

2011-06-24
HISTORICAL
J1752/2_201106
This SAE Recommended Practice defines a method for evaluating the near field electric or magnetic component of the electromagnetic field at the surface of an integrated circuit (IC). This technique is capable of providing a detailed pattern of the RF sources internal to the IC. The resolution of the pattern is determined by the characteristics of the probes used and the precision of the mechanical probe positioner. The method is usable over the 10 MHz to 3 GHz frequency range with existing probe technology. The probe is mechanically scanned according to a programmed pattern in a plane parallel or perpendicular to the IC surface and the data is computer processed to provide a color-enhanced representation of field strength at the scan frequency. This procedure is applicable to measurements from an IC mounted on any circuit board that is accessible to the scan probe. For comparisons, the standardized test board shall be used.
Standard

Measurement of Radiated Emissions from Integrated Circuits—Surface Scan Method (Loop Probe Method) 10 MHz to 3 GHz

2003-01-21
HISTORICAL
J1752/2_200301
This SAE Recommended Practice defines a method for evaluating the near field electric or magnetic component of the electromagnetic field at the surface of an integrated circuit (IC). This technique is capable of providing a detailed pattern of the RF sources internal to the IC. The resolution of the pattern is determined by the characteristics of the probes used and the precision of the mechanical probe positioner. The method is usable over the 10 MHz to 3 GHz frequency range with existing probe technology. The probe is mechanically scanned according to a programmed pattern in a plane parallel or perpendicular to the IC surface and the data is computer processed to provide a color-enhanced representation of field strength at the scan frequency. This procedure is applicable to measurements from an IC mounted on any circuit board that is accessible to the scan probe. For comparisons, the standardized test board shall be used.
X